Multi-site Data Harmonization with ComBat

Dana Tudorascu (BDM Core)

Work was done by Chen Luo (PET Center, Pittsburgh)

Objective

- To understand how the ComBat adjust the data
 - on different batch (site).
 - if/not including biological covariates.
- To understand how the the effect of small outlier batch when performing ComBat.

Data

• Data:

- Mayo_Aparc:
 - unit: mm
 - definition: thickness
- Mayo_Aseg:
 - unit: mm3
 - definition: volume
- Mayo_Aseg_Norm:
 - unit: % (mm3/mm3*100%)
 - definition: percentage of volumn based on EstimatedTotalIntraCranialVol
- Sample size:
 - Aparc and Aseg have the same sample size total 198.
 - Because 18 sample has missing the AgeAtScan and diagnosis, only 180 are used,
 - By removing the control, 138 remain.
 - By removing the WashU datapoint, 134 remained.

- Level: dataset
 - wControl:
 - with control datapoint and include WashU's data
 - woCotrol
 - without control datapoint and include WashU's data
 - woCotrol_rmwa
 - without control datapoint and exclude WashU's data
- Level: adjust
 - Original:
 - the raw data
 - ComBat:
 - without considering other biological covariance
 - ComBat_mod:
 - with considering other biological covariance

Demographic information

gender F M

index

wControl 99 81

woControl 66 72

woControl_rmwa 65 69

Sample size by gender

site	bn	f	uk	wa	wi
index					
wControl	17.0	52.0	40.0	6.0	65.0
woControl	11.0	40.0	31.0	4.0	52.0
woControl_rmwa	11.0	40.0	31.0	NaN	52.0

Sample size by site

gender	F					м				
site	bn	f	uk	wa	wi	bn	f	uk	wa	wi
index										
wControl	14.0	23.0	22.0	2.0	38.0	3.0	29.0	18.0	4.0	27.0
woControl	8.0	15.0	15.0	1.0	27.0	3.0	25.0	16.0	3.0	25.0
woControl_rmwa	8.0	15.0	15.0	NaN	27.0	3.0	25.0	16.0	NaN	25.0

Sample size by gender and site

Age distribution by site and gender (F: Orange, M: Blue)

Method: ComBat Model

ComBat Model: $y_{ijv} = \alpha_v + X_{ji}^T \beta_v + Z_{ij}^T \theta_v + \delta_{iv} \varepsilon_{ijv}$

Adjustment equation: $y'_{ijv} = \alpha_v + X^T_{ji}\beta_v + \epsilon_{ijv} = \alpha_v + X^T_{ji}\beta_v + \frac{\epsilon_{ijv}\delta_{iv}}{\delta_{iv}} = \alpha_v + X^T_{ji}\beta_v + \frac{y_{ijv}-\alpha_v-X^T_{ji}\beta_v-Z^T_{ij}\theta_v}{\delta_{iv}}$

- The ComBat reconstructs the data by separating:
 - mean biological effect,
 - non-biological effect (batch),
 - Other biological effect (mod).
- input:
 - data: VOI measurement
 - mod: with/without age and gender and diagnosis
 - batch effect: site
- setup argument :
 - `mean.only=FALSE`: change mean and adjust scale.
 - `par.prior=FALSE`: nonparametric estimation

Method: Cluster analysis

- By considering data from one site as one cluster, evaluate the batch (site) effect using separation metric, which commonly used in clustering analysis.
- The following statistics are evaluated to compare the dataset before and after the ComBat Adjustment

• Within Cluster Sums of Squares : WSS =
$$\sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$$

• Between Cluster Sums of Squares: BSS = $\sum_{i=1}^{N_C} |C_i| \cdot d(\bar{\mathbf{x}}_{C_i}, \bar{\mathbf{x}})^2$

 C_i = Cluster, N_c = # clusters, \overline{x}_{c_i} = Cluster centroid, \overline{x} = Sample Mean

 $\overline{i=1}$

color_palette = {
'wa': '#008080', # teal,
'f': '#ffa500', # orange
'wi': '#00ff00', # lime
'bn': '#0000ff', # blue
'uk': '#ff1493' # deeppink

Grand comparison: Aparc

kdeplot of PC0 and PC1 for Aparc ComBat and Original dataset

color_palette = {
'wa': '#008080', # teal,
'f': '#ffa500',
'wi': '#00ff00', # lime
'bn': '#0000ff',
'uk': '#ff1493' # deeppink

Grand comparison: Aseg

	type	dataset	adjust	TSS	WSS	BSS
0	Aseg_wControl_Original	wControl	Original	2880.0	2725.490641	154.509359
0	Aseg_wControl_ComBat	wControl	ComBat	2880.0	2850.318239	29.681761
0	Aseg_wControl_ComBat_mod	wControl	ComBat_mod	2880.0	2802.181308	77.818692
0	Aseg_woControl_Original	woControl	Original	2208.0	2050.686413	157.313587
0	Aseg_woControl_ComBat	woControl	ComBat	2208.0	2176.354933	31.645067
0	Aseg_woControl_ComBat_mod	woControl	ComBat_mod	2208.0	2144.601183	63.398817
0	Aseg_woControl_rmwa_Original	woControl_rmwa	Original	2144.0	2007.26963	136.73037
0	Aseg_woControl_rmwa_ComBat	woControl_rmwa	ComBat	2144.0	2114.957439	29.042561
0	Aseg_woControl_rmwa_ComBat_mod	woControl_rmwa	ComBat_mod	2144.0	2090.265622	53.734378

color_palette = { 'wa': '#008080', # teal, 'f': '#ffa500', # orange 'wi': '#00ff00', # lime 'bn': '#0000ff', # blue 'uk': '#ff1493' # deeppink

Grand comparison: Aseg_Norm

kdeplot of PC0 and PC1 for Aseg_Norm ComBat and Original dataset

	type	dataset	adjust	TSS	wss	BSS
0	Aseg_Norm_wControl_Original	wControl	Original	2880.0	2725.49051	154.50949
0	Aseg_Norm_wControl_ComBat	wControl	ComBat	2880.0	2850.318185	29.681815
0	Aseg_Norm_wControl_ComBat_mod	wControl	ComBat_mod	2880.0	2802.181305	77.818695
0	Aseg_Norm_woControl_Original	woControl	Original	2208.0	2050.686215	157.313785
0	Aseg_Norm_woControl_ComBat	woControl	ComBat	2208.0	2176.354841	31.645159
0	Aseg_Norm_woControl_ComBat_mod	woControl	ComBat_mod	2208.0	2144.601049	63.398951
0	Aseg_Norm_woControl_rmwa_Original	woControl_rmwa	Original	2144.0	2007.269452	136.730548
0	Aseg_Norm_woControl_rmwa_ComBat	woControl_rmwa	ComBat	2144.0	2114.957371	29.042629
0	Aseg_Norm_woControl_rmwa_ComBat_mod	woControl_rmwa	ComBat_mod	2144.0	2090.265506	53.734494

Grand comparison

- The ComBat largely adjusted the Mayo_Aparc subset, but not so much on the Mayo_Aseg/Mayo_Aseg_Norm.
- ComBat decreases separation (BSS) between batch (site), while increases compactness (WSS).
 - Note: K-Means algorithm tries to get the optimized points of the centroid, which minimize the value of WSS and maximize the value of BSS.
- Additionally, excluding WashU's data only have small effect on the cluster analysis statistics compare to that of including WashU's data.
- In the following detail analysis, only Mayo_Aparc and Mayo_Aseg_Norm will be comparing between the level of Original vs ComBat_mod, and between the level of include vs exclude WashU 's samples. The reason are:
 - Drop Control: Control should be excluded from this scope of study. Note: By removing the control subject, the total sum of squred reduce as expected.
 - Drop Mayo_Aseg: There is no different between Mayo_Aseg and Mayo_Aseg_Norm as expected, because their difference are only re-scaling.
 - Drop ComBat: the ComBat without counting other biological covariance are not reflecting the reality.

Method: Statistical analysis

- To understand the Combat in detail of effect on biological covariance and each individual VOI, the following statistics are evaluated:
 - Mean
 - standard deviation (std)
 - coefficient of variation (cv = std/mean)
- Notation:
 - increase (+),
 - decrease (-),
 - mix of increase and decrease (+-),
 - undistinguisable change (~)

Statistics of VOI variables

- As expected, ComBat models consistently reduce the std and CV of each VOI (with some pull back compared to ComBat model without considering biological, which is not shown here)
- Mayo_Aparc and Mayo_Aseg_Norm both have the same pattern as the following (Adjust - Original):

dataset	mean	std	cv
woControl	~	-	-
woControl_rmwa	~	-	-

Statistics of VOI variables by site

- As expected, The ComBat location/scale adjustment vary by batches (site)
- The result for two data are summarized at the following (Adjust Original

	mean_serere	moun_ano		ota_antor	moun_um	ota_am	
site							
bn	2.568139	2.563739	0.090989	0.083436	-0.004400	-0.007553	
f	2.586167	2.596095	0.074083	0.072736	0.009927	-0.001347	
uk	2.521784	2.588760	0.072832	0.064406	0.066976	-0.008425	
wa	2.810183	2.613192	0.087464	0.077400	-0.196991	-0.010063	
wi	2.634140	2.603224	0.059328	0.060641	-0.030916	0.001313	
Mayo_Aparc_woControl							

mean before mean after std before std after mean diff std diff

by site	site	mean	std	cv	site	mean	std	cv
Ny Site	bn	-	-	-	bn	-	-	-
	f	+-	+	+	f	+	-	-
vary by batches (site).	uk	+	-	-	uk	-	-	+-
ing (Adjust - Original)	wa	-	+-	+	wa	+	+	+
ing (Aujust - Original).	wi	-	+	+	wi	~	+	+
mean before mean after std before	std at	fter me	ean di	ff sto	diff			

site						
bn	0.703593	0.674390	0.165531	0.159231	-0.029202	-0.006301
f	0.695133	0.709315	0.125239	0.117381	0.014182	-0.007858
uk	0.713216	0.710588	0.129423	0.130825	-0.002628	0.001402
wa	0.717846	0.730696	0.127963	0.142108	0.012850	0.014145
wi	0.706414	0.702574	0.126480	0.131851	-0.003841	0.005371

Mayo_Aseg_Norm_woControl

- No Need to exclude WashU' data.
 - Removing WashU' small data slightly change the mean effect in the model, slightly reduce the variance of the total sum of square in the adjusted data.
 - The other batch were not so different after ComBat when excluding WashU's data.

Statistics of VOI variables by Gender

- For both male and female, ComBat adjusts the data by both up and down to reduce the std and cv of each VOI within each gender group.
- Mayo_Aparc and Mayo_Aseg_Norm both have the same pattern as the following (Adjust Original):

F	+-	-	-
М	+-	-	-

gender mean std cv

Statistics of VOI variables by Age

- across age, ComBat adjusts the data by both up and down to reduce the std and cv of each VOI within each age group.
- Mayo_Aparc and Mayo_Aseg_Norm Both has the same pattern as the following:

Mayo_Aparc

Mayo_Aseg_Norm